adaptive-vision.com

Zebra
Aurora Vision

Aurora Vvision Library 5.6

Introduction

Created: 9/25/2025

Product version: 5.6.1.79554

Table of content:

e Overview
e Programming Conventions
e Aurora Template Library


https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://www.adaptive-vision.com

overview

Introduction

Aurora Vision Library is a machine vision library for C++ and .NET programmers. It provides a
comprehensive set of functions for creating industrial image analysis applications - from standard-based
image acquisition interfaces, through Tow-level image processing routines, to ready-made tools such as
template matching, measurements or barcode readers. The main strengths of the product include the highest
performance, modern design and simple structure making it easy to integrate with the rest of your code.

The scope of the library encompasses:

Image Processing

High performance, any-shape ROI operations for
unary and binary image arithmetics,
refinement, morphology, smoothing, spatial
transforms, gradients, thresholding and color
analysis.

Region Analysis

Robust processing of pixel sets that
correspond to foreground objects: extraction,
set arithmetics, refinement, morphology,
skeletonization, spatial transformations,
feature extraction and measurements.

Path Analysis

Subpixel-precise alternative to region
analysis, particularly suitable for shape
analysis. Provides methods for contour
extraction, refinement, segmentation,
smoothing, classification, global
transformations, feature extraction and more.

Profiles

Auxiliary toolset for analysis of one-
dimensional sequences of values, e.g. image
sections or path-related distances.

Histograms L
Auxiliary toolset for value distribution
analysis.

Geometry 2D

Exhaustive toolset of geometric operations
compatible with other parts of the library.
Provides operations for measuring distances
and angles, determining intersections,
tangents and feature.

1D Edge Detection

Detection of edges, ridges and stripes (paired
edges) by the means of 1D edge scanning, i.e.

by extracting and analysing a profile along a

2D Edge Detection

Detection of edges by the means of 2D edge
tracing, i.e. by extracting and refining
locally maximal image gradients.

Fourier Analysis

Suitable both for educational experimentation
and industrial application, this toolset
provides methods for Fourier transform and
image processing in the frequency domain.

Template Matching

Efficient, robust and easy to use methods for
Tocalizing objects using a gray-based or an
edge-based model.

Barcodes .
Degect1on and recognition of many types of 1D
codes.

Datacodes L
Detection and recognition of QR codes and
DataMatrix codes.

Hough Transform
Detection of analytical shapes using the Hough
transform.

Image Segmentation . . .
Automated extraction of object regions using
gray or edge information.

Multilayer Perceptron
Artificial neural networks.

optical Character Recognition .
Text recognition or validation, including dot
print.

shape Fitting . .
Subpixel-precise detection of analytical
shapes, whose rough locations are known.

specified path.

Relation between Aurora Vision Library and Aurora Vision Studio

Each function of the Aurora Vvision Library is the basis for the corresponding filter available in Aurora
vision Studio. Therefore, it is possible (and advisable) to use the Aurora Vvision Studio as a convenient,
drag & drop prototyping tool, even if one intends to develop the final solution in C++ using Aurora Vision
Library. Moreover, for extended information about how to use advanced image analysis techniques, one can
refer to Machine vision Guide from the documentation of Aurora Vvision Studio.

In the table below we compare the Thresholdimage function with the Thresholdimage filter:

Aurora Vision Library:

void ThresholdImage

(
const Image& inImage,
optional<const Region&> inRoi,
Optional<real> inMinvalue,

Optional<real> inMaxvalue,
real inFuzziness,
Image& outMonoImage

H

Key Features

Aurora Vision Studio:

Thresholdimage

i : inMinValue
inRoi %{J
outMonolmage inMaxVYalue



https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html

Performance

In Aurora Vision Library careful design of algorithms goes hand in hand with extensive hardware
optimizations, resulting in performance that puts the Tibrary among the fastest in the world. our
implementations make use of SSE instructions and parallel computations on multicore processors.

Modern Design

A1l types of data feature automatic memory management, errors are handled explicitly with exceptions
and optional types are used for type-safe special values. A1l functions are thread-safe and use data
parallelism internally, when possible.

consistency

The Tibrary is a simple collection of types and functions, provided as a single DLL file with appropriate
headers. For maximum readability function follow consistent naming convention (e.g. the VERB + NOUN form
as in: ErodeImage, Rotatevector). All results are returned via reference output parameters, so that many
outputs are always possible.

Example Program

A simple program based on the Aurora Vision Library may look as follows:

#include <AVL.h>

using namespace atl;
using namespace avl;

int mainQ)
{
try
{
InitLibraryQ;
Image input, output;
LoadImage("input.bmp", false, input);
Thresholdimage(input, NIL, 128, NIL, O, output);
SaveImage(output, NIL, "output.bmp", false);
return 0;
}
catch (const atl::Error&)
{
return -1;
}
}

Please note that Aurora Vvision Library is distributed with a set of example programs, which are available
after installation.


https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/ErodeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/RotateVector.html

Programming Conventions

organization of the Library

Aurora Vision Library is a collection of C++ functions that process machine vision related types of data.
Each function corresponds to a single data processing operation, e.g. DetectEdges_AsPaths performs a
canny-1like 2D edge detection. As a data processing library, it is not particularly object-oriented. It
does use, however, modern approach to C++ programming with automatic memory management, exception

handling, thread safety and the use of templates where appropriate.

Namespaces

There are two namespaces used:

e atl - the namespace of types and functions related to Aurora Template Library.
e avl - the namespace of types and functions related to Aurora Vision Library as the whole.

e avs - Aurora Vision Studio Code Generator equivalents of Aurora Vision Library functions. Not
recommended to use.

Enumeration Types
A1l enumeration types in Aurora Vision Library use C++0x-1ike namespaces, for example:

namespace EdgeFilter

{
enum Type
{
canny,
Deriche,
Lanser
};
1

This has two advantages: (1) some identifiers can be shared between different enumeration types; (2) after

typing "EdgeFilter::" IntelliSense will display all possible elements of the given enumeration type.

Example:

atl::Array<avl::Path> edges;
avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,
2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Function Parameters

Contrary to standard C++ libraries, machine vision algorithms tend to have many parameters and often
compute not single, but many output values. Moreover, diagnostic information is highly important for
effective work of a machine vision software engineer. For these reasons, function parameters in Aurora

Vision Library are organized as follows:

1. First come input parameters, which have "in" prefix.
2. Second come output parameters, which have "out" prefix and denote the results.

3. The last_come diagnostic output parameters, which have "diag" prefix and contain information that
is useful for optimizing parameters (not computed when the diagnostic mode is turned off).

For example, the following function invocation has a number of input parameters, a single output parameter
(edges) and a single diagnostic output parameter (gradientImage).
atl::Array<avl::Path> edges;

avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,
2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Diagnostic Output Parameters
Due to efficiency reasons the diagnostic outputs are only computed when the diagnostic mode is turned on.
This can be done by calling:

avl::EnableAviDiagnosticOutputs(true);

In your code you can check if the diagnostic mode 1is turned on by calling:


https://docs.adaptive-vision.com/5.6/avl/functions/2DEdgeDetection/DetectEdges_AsPaths.html
https://docs.adaptive-vision.com/5.6/avl/introduction/ATL.html

if (avl::GetAviDiagnosticOutputsEnabled())
{

Jf oo

}

optional oOutputs

Due to efficiency reasons computation of some outputs can be skipped. In function TestImage user can
inform function that computation of outMonoImage 1is not necessary and function can omit computation of
this data.

the TestImage Header with last two optional parameters:

void avl::TestImage

(

avl::TestImageId::Type inImageld,
atl::0ptional<avl::Image&> outRgbImage = atl::NIL,
atl::0ptional<avl::Image&> outMonoImage = atl::NIL

)
Example of using optional outputs:

avl::Image rgb, mono;

// Both outputs are computed
avl::TestImage(avl::TestImageld::Baboon, rgb, mono);

// only RGB image is computed
avl::TestImage(avl::TestImageId::Baboon, rgb);

// Only mono image is computed
avl::TestImage(avl::TestImageld::Baboon, atl::NIL, mono);

In-Place Data Processing

some functions can process data 7n-place, i.e. modifying the input objects instead of computing new ones.
There are two approaches used for such functions:

1. some filters, e.g. the image drawing routines, use "io" parameters, which work simultaneously as
1Eputs and outputs. For example, the following function invocation draws red circles on the 7imagel
object:

avl::DrawCircle(imagel, circle, atl::NIL, avl::Pixel(255, 0, 0), style);

2. some filters, e.g. image point transforms, can be given the same.ob%ect on the input and on the
output. For example, the following function invocation negates pixel values without allocating any
additional memory:

avl::NegateImage(imagel, atl::NIL, imagel);

Please note, that simple functions 1ike NegateImage can be executed even 3 times faster in-place than when
computing a new output object.

work Cancellation

Most of long-working functions can be cancelled using Cancelcurrentwork function. Cancellation technique
is thread-safe, so function Cancelcurrentwork can be called from different thread. If avl function was
cancelled then atl::CancellationError is thrown.

To check cancellation status use the IsCurrentworkCancelled or ThrowIfCurrentworkcancelled functions.


https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageDrawing/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePointTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePointTransforms/NegateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/IsCurrentWorkCancelled.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/ThrowIfCurrentWorkCancelled.html

void ProcessingThread()

{

while (lavl::IsCurrentworkcCancelled())

{
std::cout << "Iteration start" << std::endl;
avl::Delay(10000); // Function with cancellation support
std::cout << "Iteration complete"” << std::endl;

}

std::cout << "Processing thread stop" << std::endl;
}
int mainQ)
{

avl::InitLibrary(Q;
std::thread t {ProcessingThread};

std::cout << "Press Enter to stop execution." << std::endl;
std::cin.get(Q);

// Cancel work in ProcessingThread and in avl::Delay
avl::cancelcurrentwork();

t.joinQ;
return 0;

}

Library Initialization

For reasons related to efficiency and thread-safety, before any other function of the AvVL Tibrary is
called, the InitLibrary function should be called first:

int mainQ)

{
avl::InitLibrary(Q;
/).

}

Debug Preview

For diagnostic purposes it is useful to be able to preview Images and image based data primitives. You can
achieve this by using functions from the Debug Preview category. They can be helpful in debugging programs
and displaying both intermediate and final data.

avl::Image image;
avl::LoadImage("hello.png", false, image);

// Prepare the preview window
auto view = avl::DebugPreview::Createview("My Preview Window");

// Show Toaded image in new window.
avl::DebugPreview: :SetviewImage(view, image);

// Wait until window is closed.
avl::DebugPreview: :WaitForviewClose(view);


https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/InitLibrary.html
https://docs.adaptive-vision.com/5.6/avl/functions/DebugPreview/index.html

Aurora Template Library

Aurora Vision Library is based on the Aurora Template Library - a simplified counterpart of the C++
Standard Template Library, which avoids advanced templating techniques mainly by using raw pointers
instead of abstract iterators. This makes Aurora Vvision Library portable to embedded platforms, including
the ones that do not support C++ templates fully.

Please note, that the following types should only be parametrized with fundamental types (int, float,
etc.) or types from avl or atl namespace. Const and/or reference types are also allowed, as long as
template type accepts such type (e.g. Array<T> cannot be parametrized with reference type).

Array<T>

The Array<T> type strictly corresponds to std::vector<T>. It is a random-access, sequential container with
automatic memory reallocation when growing.

Here is a simplified version of the public interface is depicted: Array.h
Ooptional<T>

The Optional<T> type provides a consistent way of representing an optional value, something for which NULL
pointers or special values (such as -1) are often used. Many APIs provide optional values using default
values of parameters. This type 1is inspired by boost::optional<T> class from the Boost Library, but is
designed mostly for input parameters, not only for function results.

In Aurora Vision Library it is used to represent optional regions of interest in image processing
operations and many other input parameters that can be determined automatically when not provided by an
user.

Documentation for this type is presented in oOptional.h.

Sample use:

atl::0ptional<avl::Point2D> p;

p = avl::Point2D(10, 25); // normal value

p = atl::NIL; // NIL value

if (p !'= atl::NIL)

{
avl::Point2D q = p.Get(); // access to a non-nil value
p.-Get().x = 15; // direct access to a field

}

conditional<T>

This type of data is especially used to determine invalid results. Many functions in C return special
value as -1 or NULL when their result is invalid. Type Conditional<T> is very similar to Optional<T>, but
it is mostly used in outputs.

Documentation for this type is presented in Conditional.h.

Sample use:

atl::Conditional<int> result;
avl::ParseInteger("Testl", avl::NumberSystemBase::Base_10, result); // Parsing textual data

if (result != atl::NIL) // If textual data is not valid integer result has value atl::NIL
printf("valid integer.");
else

printf("Invalid integer. value: %d", result.Get());

Dummy<T>

Dummy<T> class is used to create a temporary object that will be released after its use. It is mostly used
to create a temporary object to pass its reference to a function. Such temporary objects are helpful when
not all values returned by a function are important and we don't plan to use them.

Sample use:


https://docs.adaptive-vision.com/5.6/avl/datatypes/TypeReference.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Array.html
https://www.boost.org/doc/libs/1_47_0/libs/optional/doc/html/index.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Optional.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Conditional.html

avl::Region region;
avl::Circle2D circle = avl::Circle2p(50.0f, 50.0f, 50.0f);

avl::CreateCirclerRegion(circle, atl::NIL, 100, 100, region);
// Second parameter is not used.

avl::Segment2D minorAxis;
avl::RegionElTipticAxes(region, atl::Dummy<avl::Segment2D>(), minorAxis);

std::cout << "Minor axis Tength: << minorAxis.Length(Q);

Zebra
Aurora Vision

This article is valid for version 5.6.1

©2007-2025 Aurora Vision


https://www.adaptive-vision.com/

	Aurora Vision Library 5.6
	Introduction
	Overview
	Introduction
	Relation between Aurora Vision Library and Aurora Vision Studio
	Key Features
	Performance
	Modern Design
	Consistency
	Example Program
	Programming Conventions
	Organization of the Library
	Namespaces
	Enumeration Types
	Function Parameters
	Diagnostic Output Parameters
	Optional Outputs
	In-Place Data Processing
	Work Cancellation
	Library Initialization
	Debug Preview
	Aurora Template Library
	Array<T>
	Optional<T>
	Conditional<T>
	Dummy<T>

