
Aurora Vision Library Aurora Vision Library 55.6.6

IntroductionIntroduction

Created: 9/25/2025

Product version: 5.6.1.79554

adaptive-vision.com

Table of content:

Overview

Programming Conventions

Aurora Template Library

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://www.adaptive-vision.com

OverviewOverview

IntroductionIntroduction

Aurora Vision LibraryAurora Vision Library is a machine vision library for C++ and .NET programmers. It provides a
comprehensive set of functions for creating industrial image analysis applications 3 from standard-based
image acquisition interfaces, through low-level image processing routines, to ready-made tools such as
template matching, measurements or barcode readers. The main strengths of the product include the highest
performance, modern design and simple structure making it easy to integrate with the rest of your code.

The scope of the library encompasses:

Relation between Aurora Vision Library and Aurora Vision StudioRelation between Aurora Vision Library and Aurora Vision Studio

Each function of the Aurora Vision Library is the basis for the corresponding filter available in AuroraAurora
Vision StudioVision Studio. Therefore, it is possible (and advisable) to use the Aurora Vision Studio as a convenient,
drag & drop prototyping tool, even if one intends to develop the final solution in C++ using Aurora Vision
Library. Moreover, for extended information about how to use advanced image analysis techniques, one can
refer to Machine Vision Guide from the documentation of Aurora Vision StudioAurora Vision Studio.

In the table below we compare the ThresholdImage function with the ThresholdImage filter:

Key FeaturesKey Features

Image ProcessingImage Processing
High performance, any-shape ROI operations for
unary and binary image arithmetics,
refinement, morphology, smoothing, spatial
transforms, gradients, thresholding and color
analysis.

Region AnalysisRegion Analysis
Robust processing of pixel sets that
correspond to foreground objects: extraction,
set arithmetics, refinement, morphology,
skeletonization, spatial transformations,
feature extraction and measurements.

Path AnalysisPath Analysis
Subpixel-precise alternative to region
analysis, particularly suitable for shape
analysis. Provides methods for contour
extraction, refinement, segmentation,
smoothing, classification, global
transformations, feature extraction and more.

ProfilesProfiles
Auxiliary toolset for analysis of one-
dimensional sequences of values, e.g. image
sections or path-related distances.

HistogramsHistograms
Auxiliary toolset for value distribution
analysis.

Geometry 2DGeometry 2D
Exhaustive toolset of geometric operations
compatible with other parts of the library.
Provides operations for measuring distances
and angles, determining intersections,
tangents and feature.

1D Edge Detection1D Edge Detection
Detection of edges, ridges and stripes (paired
edges) by the means of 1D edge scanning, i.e.
by extracting and analysing a profile along a
specified path.

2D Edge Detection2D Edge Detection
Detection of edges by the means of 2D edge
tracing, i.e. by extracting and refining
locally maximal image gradients.

Fourier AnalysisFourier Analysis
Suitable both for educational experimentation
and industrial application, this toolset
provides methods for Fourier transform and
image processing in the frequency domain.

Template MatchingTemplate Matching
Efficient, robust and easy to use methods for
localizing objects using a gray-based or an
edge-based model.

BarcodesBarcodes
Detection and recognition of many types of 1D
codes.

DatacodesDatacodes
Detection and recognition of QR codes and
DataMatrix codes.

Hough TransformHough Transform
Detection of analytical shapes using the Hough
transform.

Image SegmentationImage Segmentation
Automated extraction of object regions using
gray or edge information.

Multilayer PerceptronMultilayer Perceptron
Artificial neural networks.

Optical Character RecognitionOptical Character Recognition
Text recognition or validation, including dot
print.

Shape FittingShape Fitting
Subpixel-precise detection of analytical
shapes, whose rough locations are known.

Aurora Vision LibraryAurora Vision Library: Aurora Vision StudioAurora Vision Studio:

void ThresholdImage

(

 const Image& inImage,

 Optional<const Region&> inRoi,

 Optional<real> inMinValue,

 Optional<real> inMaxValue,

 real inFuzziness,

 Image& outMonoImage

);

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html

PerformancePerformance

In Aurora Vision Library careful design of algorithms goes hand in hand with extensive hardware
optimizations, resulting in performance that puts the library among the fastest in the world. Our
implementations make use of SSE instructionsSSE instructions and parallel computationsparallel computations on multicore processors.

Modern DesignModern Design

All types of data feature automatic memory managementautomatic memory management, errors are handled explicitly with exceptionsexceptions
and optional typesoptional types are used for type-safe special values. All functions are thread-safethread-safe and use datadata
parallelismparallelism internally, when possible.

ConsistencyConsistency

The library is a simple collection of types and functions, provided as a single DLL file with appropriate
headers. For maximum readability function follow consistent naming convention (e.g. the VERB + NOUN form
as in: ErodeImage, RotateVector). All results are returned via reference output parameters, so that many
outputs are always possible.

Example ProgramExample Program

A simple program based on the Aurora Vision Library may look as follows:

#include <AVL.h>

using namespace atl;

using namespace avl;

int main()

{

 try

 {

 InitLibrary();

 Image input, output;

 LoadImage("input.bmp", false, input);

 ThresholdImage(input, NIL, 128, NIL, 0, output);

 SaveImage(output, NIL, "output.bmp", false);

 return 0;

 }

 catch (const atl::Error&)

 {

 return -1;

 }

}

Please note that Aurora Vision Library is distributed with a set of example programs, which are available
after installation.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/ErodeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/RotateVector.html

Programming ConventionsProgramming Conventions

Organization of the LibraryOrganization of the Library

Aurora Vision Library is a collection of C++ functions that process machine vision related types of data.
Each function corresponds to a single data processing operation, e.g. DetectEdges_AsPaths performs a
Canny-like 2D edge detection. As a data processing library, it is not particularly object-oriented. It
does use, however, modern approach to C++ programming with automatic memory management, exception
handling, thread safety and the use of templates where appropriate.

NamespacesNamespaces

There are two namespaces used:

atlatl 3 the namespace of types and functions related to Aurora Template Library.

avlavl 3 the namespace of types and functions related to Aurora Vision Library as the whole.

avsavs 3 Aurora Vision Studio Code Generator equivalents of Aurora Vision Library functions. Not
recommended to use.

Enumeration TypesEnumeration Types

All enumeration types in Aurora Vision Library use C++0x-like namespaces, for example:

namespace EdgeFilter

{

 enum Type

 {

 Canny,

 Deriche,

 Lanser

 };

}

This has two advantages: (1) some identifiers can be shared between different enumeration types; (2) after
typing "EdgeFilter::" IntelliSense will display all possible elements of the given enumeration type.

Example:

atl::Array<avl::Path> edges;

avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,

 2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Function ParametersFunction Parameters

Contrary to standard C++ libraries, machine vision algorithms tend to have many parameters and often
compute not single, but many output values. Moreover, diagnostic information is highly important for
effective work of a machine vision software engineer. For these reasons, function parameters in Aurora
Vision Library are organized as follows:

1. First come input parametersinput parameters, which have "in" prefix.

2. Second come output parametersoutput parameters, which have "out" prefix and denote the results.

3. The last come diagnostic output parametersdiagnostic output parameters, which have "diag" prefix and contain information that
is useful for optimizing parameters (not computed when the diagnostic mode is turned off).

For example, the following function invocation has a number of input parameters, a single output parameter
(edges) and a single diagnostic output parameter (gradientImage).

atl::Array<avl::Path> edges;

avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,

 2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Diagnostic Output ParametersDiagnostic Output Parameters

Due to efficiency reasons the diagnostic outputs are only computed when the diagnostic mode is turned on.
This can be done by calling:

avl::EnableAvlDiagnosticOutputs(true);

In your code you can check if the diagnostic mode is turned on by calling:

https://docs.adaptive-vision.com/5.6/avl/functions/2DEdgeDetection/DetectEdges_AsPaths.html
https://docs.adaptive-vision.com/5.6/avl/introduction/ATL.html

if (avl::GetAvlDiagnosticOutputsEnabled())

{

 //...

}

Optional OutputsOptional Outputs

Due to efficiency reasons computation of some outputs can be skipped. In function TestImage user can
inform function that computation of outMonoImageoutMonoImage is not necessary and function can omit computation of
this data.

the TestImage Header with last two optional parameters:

void avl::TestImage

(

 avl::TestImageId::Type inImageId,

 atl::Optional<avl::Image&> outRgbImage = atl::NIL,

 atl::Optional<avl::Image&> outMonoImage = atl::NIL

)

Example of using optional outputs:

avl::Image rgb, mono;

// Both outputs are computed

avl::TestImage(avl::TestImageId::Baboon, rgb, mono);

// Only RGB image is computed

avl::TestImage(avl::TestImageId::Baboon, rgb);

// Only mono image is computed

avl::TestImage(avl::TestImageId::Baboon, atl::NIL, mono);

In-Place Data ProcessingIn-Place Data Processing

Some functions can process data in-place, i.e. modifying the input objects instead of computing new ones.
There are two approaches used for such functions:

1. Some filters, e.g. the image drawing routines, use "io" parameters, which work simultaneously as
inputs and outputs. For example, the following function invocation draws red circles on the image1
object:

avl::DrawCircle(image1, circle, atl::NIL, avl::Pixel(255, 0, 0), style);

2. Some filters, e.g. image point transforms, can be given the same object on the input and on the
output. For example, the following function invocation negates pixel values without allocating any
additional memory:

avl::NegateImage(image1, atl::NIL, image1);

Please note, that simple functions like NegateImage can be executed even 3 times faster in-place than when
computing a new output object.

Work CancellationWork Cancellation

Most of long-working functions can be cancelled using CancelCurrentWork function. Cancellation technique
is thread-safe, so function CancelCurrentWork can be called from different thread. If avl function was
cancelled then atl::CancellationError is thrown.

To check cancellation status use the IsCurrentWorkCancelled or ThrowIfCurrentWorkCancelled functions.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageDrawing/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePointTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePointTransforms/NegateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/IsCurrentWorkCancelled.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/ThrowIfCurrentWorkCancelled.html

void ProcessingThread()

{

 while (!avl::IsCurrentWorkCancelled())

 {

 std::cout << "Iteration start" << std::endl;

 avl::Delay(10000); // Function with cancellation support

 std::cout << "Iteration complete" << std::endl;

 }

 std::cout << "Processing thread stop" << std::endl;

}

int main()

{

 avl::InitLibrary();

 std::thread t {ProcessingThread};

 std::cout << "Press Enter to stop execution." << std::endl;

 std::cin.get();

 // Cancel work in ProcessingThread and in avl::Delay

 avl::CancelCurrentWork();

 t.join();

 return 0;

}

Library InitializationLibrary Initialization

For reasons related to efficiency and thread-safety, before any other function of the AVL library is
called, the InitLibrary function should be called first:

int main()

{

 avl::InitLibrary();

 //...

}

Debug PreviewDebug Preview

For diagnostic purposes it is useful to be able to preview Images and image based data primitives. You can
achieve this by using functions from the Debug Preview category. They can be helpful in debugging programs
and displaying both intermediate and final data.

avl::Image image;

avl::LoadImage("hello.png", false, image);

// Prepare the preview window

auto view = avl::DebugPreview::CreateView("My Preview Window");

// Show loaded image in new window.

avl::DebugPreview::SetViewImage(view, image);

// Wait until window is closed.

avl::DebugPreview::WaitForViewClose(view);

https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/InitLibrary.html
https://docs.adaptive-vision.com/5.6/avl/functions/DebugPreview/index.html

Aurora Template LibraryAurora Template Library

Aurora Vision Library is based on the Aurora Template Library 3 a simplified counterpart of the C++
Standard Template Library, which avoids advanced templating techniques mainly by using raw pointers
instead of abstract iterators. This makes Aurora Vision Library portable to embedded platforms, including
the ones that do not support C++ templates fully.

Please note, that the following types should only be parametrized with fundamental types (int, float,
etc.) or types from avl or atl namespace. Const and/or reference types are also allowed, as long as
template type accepts such type (e.g. Array<T> cannot be parametrized with reference type).

Array<T>Array<T>

The Array<T> type strictly corresponds to std::vector<T>. It is a random-access, sequential container with
automatic memory reallocation when growing.

Here is a simplified version of the public interface is depicted: Array.h

Optional<T>Optional<T>

The Optional<T> type provides a consistent way of representing an optional value, something for which NULL
pointers or special values (such as -1) are often used. Many APIs provide optional values using default
values of parameters. This type is inspired by boost::optional<T> class from the Boost Library, but is
designed mostly for input parameters, not only for function results.

In Aurora Vision Library it is used to represent optional regions of interest in image processing
operations and many other input parameters that can be determined automatically when not provided by an
user.

Documentation for this type is presented in Optional.h.

Sample use:

atl::Optional<avl::Point2D> p;

p = avl::Point2D(10, 25); // normal value

p = atl::NIL; // NIL value

if (p != atl::NIL)

{

 avl::Point2D q = p.Get(); // access to a non-nil value

 p.Get().x = 15; // direct access to a field

}

Conditional<T>Conditional<T>

This type of data is especially used to determine invalid results. Many functions in C return special
value as -1 or NULL when their result is invalid. Type Conditional<T> is very similar to Optional<T>, but
it is mostly used in outputs.

Documentation for this type is presented in Conditional.h.

Sample use:

atl::Conditional<int> result;

avl::ParseInteger("Test1", avl::NumberSystemBase::Base_10, result); // Parsing textual data

if (result != atl::NIL) // If textual data is not valid integer result has value atl::NIL

 printf("Valid integer.");

else

 printf("Invalid integer. Value: %d", result.Get());

Dummy<T>Dummy<T>

Dummy<T> class is used to create a temporary object that will be released after its use. It is mostly used
to create a temporary object to pass its reference to a function. Such temporary objects are helpful when
not all values returned by a function are important and we don't plan to use them.

Sample use:

https://docs.adaptive-vision.com/5.6/avl/datatypes/TypeReference.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Array.html
https://www.boost.org/doc/libs/1_47_0/libs/optional/doc/html/index.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Optional.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Conditional.html

avl::Region region;

avl::Circle2D circle = avl::Circle2D(50.0f, 50.0f, 50.0f);

avl::CreateCircleRegion(circle, atl::NIL, 100, 100, region);

// Second parameter is not used.

avl::Segment2D minorAxis;

avl::RegionEllipticAxes(region, atl::Dummy<avl::Segment2D>(), minorAxis);

std::cout << "Minor axis length: " << minorAxis.Length();

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://www.adaptive-vision.com/

	Aurora Vision Library 5.6
	Introduction
	Overview
	Introduction
	Relation between Aurora Vision Library and Aurora Vision Studio
	Key Features
	Performance
	Modern Design
	Consistency
	Example Program
	Programming Conventions
	Organization of the Library
	Namespaces
	Enumeration Types
	Function Parameters
	Diagnostic Output Parameters
	Optional Outputs
	In-Place Data Processing
	Work Cancellation
	Library Initialization
	Debug Preview
	Aurora Template Library
	Array<T>
	Optional<T>
	Conditional<T>
	Dummy<T>

